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The base-flow and near-wake problem at very low 
Reynolds numbers 

Part 1. The Stokes approximation 

By H. VIVIAND AND S. A. BERGER 
University of California, Berkeley 

(Fbceived 2 February 1965 and in revised form 18 May 1965) 

The general solutions of the Stokes approximate equations of motion are derived 
for two-dimensional and axisymmetric flows in the half-space x > 0, for an 
arbitrarily given velocity field in the plane x = 0. There is assumed to be no solid 
surface in the half-space. According to whether the velocity at infinity is zero 
or not, the solutions can be said to describe either jet-type or wake-type flows. 
Only the latter category is considered; numerical examples are worked out and 
properties of the base flow a t  very low Reynolds numbers are investigated. 
A recirculating flow region may exist, but the flow properties are not sensitive to 
this feature. 

1. Introduction 
The base-flow andnear-wake problems have attractedmuchattentioninthehst 

few years, especially in connexion with hypersonic flight and atmospheric re-entry. 
Most of the effort has been directed towards explaining the base-flow structure 
and properties for the case of high speed, high Reynolds number, laminar flows. 

The characteristic parameter which determines the importance and nature of 
the viscous effects in the base region is the ratio S = 6,/a, of initial boundary-layer 
thickness to base height or base radius a, (figure 1). For small values of S (large- 
Reynolds-number case) the viscous effects are considered to be non-negligible 
only in a very thin, so-called mixing layer made up of the boundary layer and of 
an entrained layer in the recirculating flow; the thickness of this layer grows with 
S so that a greater and greater part of the recirculating flow becomes viscous, 
until the concept of a mixing layer becomes invalid for S large enough; it seems 
likely that S need not be very large (less than one) for this to happen. If L, is the 
body length and RL, = UL,/v, S is of the order of Ll / (a , , /RL , )~  and hence is 
directly proportional to LJa, for a fixed RL,; it is clear that for a given RL, the 
more slender the body the more important are viscous effects in the base flow. 

The present work is concerned with the structure of the base flow and the 
near-wake flow for values of S large enough for this flow to be entirely viscous, 
this case being of interest for slender bodies at low enough Reynolds numbers. 
We shall restrict ourselves to the case of an incompressible fluid. The base of the 
body is assumed plane; the base-flow region of interest is then the half-space 
downstream-of the base flow. 

f Assuming that RL, is large enough for boundary-layer concepts to apply. 
27 Fluid Mech. 23 
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At this point, the problem is to solve the incompressible Navier-Stokes 
equations in the half-space x > 0, with the necessary boundary conditions given 
at x = 0, the base plane, and with the condition of uniform flow at infinity. As 
has been indicated, the case we shall consider is one where viscous forces are 
important in the entire base region; furthermore, in the vicinity of the base, 
because of the no-slip condition, they should far outweigh inertia forces. This 
indicates that the Stokes approximation, in which inertia terms are neglected, 
should be applicable, at least locally. It is difficult to determine a priori the 
extent of this region for given 6 and RL,, although we know it to be inversely 
proportional to a characteristic Reynolds number such as UaJv; but this point 
can and will be examined a posteriori from the solution. 

We therefore propose first to treat the base-flow problem by means of the 
Stokes approximate equations of motion (Part I ) ,  despite the fact that we shall use 
boundary conditions at x = 0 far from the body, in a region where inertia effects 
are dominant. To obtain at least a qualitative estimate of the effect of the inertia 
terms, Oseen’s form of the equations of motion will also be considered (Part 2) .  

2. The basic equations 
The co-ordinate system is shown in figure 1 ; the xl-axis is taken perpendicular 

to the base plane, with origin at the base centre, and is therefore the axis of sym- 
metry when there is 0ne.t In  axisymmetric flow cylindrical co-ordinates are used, 
y1 being the radial distance (in two-dimensional flow y1 is the lateral distance). 

Dimensionless dependent and independent variables are introduced by the 
following definitions : 

x = x,/a,, 

u = U J U ,  

P = P1lPU2, 
Q = Ql a,/U, 

Y = y,/a,, 
v = vl/u,  

P = PlallPU = PRCzI, 

$ = $llUa:’+l, 

where u1 and v1 are the velocity components parallel to the xl-, yl-directions, 
respectively; p1 is the pressure; p the density; U the x,-component of free-stream 
velocity; Q, the vorticity; and k1 the stream function. Also, 

j = 0 

j = 1 

in two-dimensional flow, 

in axisymmetric flow. 

In  terms of the non-dimensional variables defined above the incompressible 
Navier-Stokes equations may be written 

a a 
- (yju) + - (yjv) = 0, 
ax aY 

(2.2a) 

(2 .2b )  

t We do not neceasarily assume symmetry of the flow in the two-dimensional cam. 
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au av 
ay ax’ 

n = - - + -  The vorticity is 

and satisfies the equation 

FIGURE 1. 

0 X1 

Sketch of base flow. (a) High-Reynolds-number, supersonic flow; 
(6) low-Reynolds-number flow. 

The continuity equation (2.1) is satisfied by introducing a stream-function 
$(x, y )  such that 

Introducing these relations into equation (2 .3) ,  

3. Method of solution 
If inertia terms are neglected, the momentum equations ( 2 . 2 )  become 

( 3 . 1 ~ )  

(3.lb) 

27-2 
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and, as a result, the vorticity equation (2.4) becomes 
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(3.2) 
1asz R 

Substituting the right-hand side of equation (2.6) for the vorticity in equation 
(3.2), we obtain the following well known equation for the stream function in 
Stokes flow 

V$@ = 0, (3.3) 

where 

We shall also use the following notations: 

if j = 0, Vi = V2, the Laplacian in two dimensions, 

The method followed consists in solving for the stream function first, equation 
(3.3), and then for the pressure, equations (3.1). The boundary conditions on 

(3.4a) 
@ are 

@(07Y) = @i(Y), 

(3.4b) 

In  axisymmetric flow, y takes on only positive (or zero) values and we have the 
additional boundary condition 

@(x,O) = 0. (3.4c) 

Note that from equation ( 3 . 4 ~ ~ )  we deduce 
.d@i(Y) u(0, y) = Ui(Y) = y-3- 

dY 
The condition for uniform flow at infinity ist 

( 3 . 4 4  

yi+l v 
j + l  U 

@@, y) x as (x2+y2) -+a. 

This condition is taken care of by equations ( 3 . 4 ~ )  and (3.4b), and is not actually 
needed to determine the solution. 

Equation (3.3) is only a particular case of a more general class of equations 
which have been studied by Almansi (1899), Payne (1958), and Weinstein (1955) 
among others, and which have remarkable properties regarding possible decom- 
positions of the solutions. Payne & Pel1 (1960) pointed out the usefulness of such 
decompositions in connexion with axially symmetric Stokes-flow problems. The 
property of which we shall make use is the following: 

The general solution of the equation 

t V is non zero only in the case of two-dimensional asymmetric flow. 
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in the domain z > q,, can be written in the form 

n 

k = l  
@ = c x k - 1 6 ,  (3.6) 

where all the functions V, are solutions of 

05% = 0. (3.7) 

It is easily verified that each term of the decomposition (3.6) is a particular 
solution of equation (3.5). Therefore, one has to solve partial differential equations 
of second order instead of order 2n. 

Making use of this representation for the solution of equation (3.3), with n = 2, 
we can write 

where 

The boundary conditions ( 3 . 4 ~ )  and (3.4b) result in 

@ = v , + X K 7  

v;v, = v;v, = 0. 
- 

Let us replace by a new function V,, defined by 

V, = -@&/ax) + G}, 
@ = v,-x{(av,/a~)+v,}, 
w, Y) = Y%(Y). 

v;4 = 0, 

together with v;v, = 0. 

so that @ becomes 

and equation (3.11) gives 

From the definition of V,, and from equations (3.9), it  is clear that 

In  axisymmetric flow, the additional boundary condition ( 3 . 4 ~ )  gives 

K ( X , O )  = V,(X,O) = 0. 

In  terms of V, and V,, the vorticity, equation (2.6), can be written 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

( 3 . 1 4 ~ )  

(3.14 b) 

(3.15) 

(3.16) 

Making use of (3.16), equations (3.1) for the pressure are easily integrated with 
the result 

(3.17) 
. a  

Therefore, the problem is reduced to finding the solutions of equations (3.14) with 
the boundary conditions (3.10), (3.13), and, if j = 1, (3.15). This is done in $54 
and 5 for two-dimensional and axisymmetric flows, respectively. 

I ,  - I,, = - 2y-3 ay {(av,/az) + GI. 
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4. Two-dimensional Stokes flow 

For j = 0 ,  equations (3.14) are Laplace's equations, to be solved for x > 0 

4.1. The stream function 

v2V, = V2& = 0, (4.1) 

with the boundary conditions (3.10) and (3.13) 

( 4 . 2 ~ )  

(4.2b) 

V, and V, are obtained immediately by using Poisson's integral for a half-plane 
(Courant & Hilbert 1962, vol. 11, p. 268): 

(4.3a) 

(4.3b) 

Since @i(r) + 00 as 7 -+ 00, the use of Poisson's integral to obtain the solution 
represented by equation ( 4 . 3 ~ )  would seem to be invalid. However, 

$i(r) N 11 +bounded terms as 7 + co, 

and the unbounded part in Ilri(r), namely r ,  contributes the finite term y to V, since 

(A formal justification for the use of Poisson's integral may be accomplished by 
introducing the new function c ( x ,  y) = V,(x, y) - y; c i s  then a harmonic function 
which is bounded at 2 = 0 for all y, including y -+ co. If we apply Poisson's 
integral to solve for vl and then transform back to V, we obtain exactly equation 
(4.3u).) Finally, we get 

4.2. Velocity Jield 

We can obtain u from equation (4.4) by calculating a$/ay; one can also note that 
V4u = 0, and 

4 0 , Y )  = Ui(Y), 

so that, by the same same method as that used to solve for @, we get 
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v is given by equations (2.5) and (4.4) as 

Hence 

The case of symmetric flow is of particular interest; then @i(q) and vi(l;l) are odd 
functions of 7, while ui(r)  and dv,/dy are even in 7; taking advantage of this fact, 
the velocity on the axis of symmetry can be written in the form 

4.3. Pressure field 

Equations (3.17) and (4.3) yield 

In the case of symmetric flow, the pressure on the axis of symmetry becomes 

Another interesting result is the base pressure; in general the values taken at  
x = 0 by various quantities such as avlax, p ,  Q, etc., which involve partial deri- 
vatives of V, or V, of odd order in x, cannot be inferred directly from the solutions 
given above for V, and V, because these integral representations are singular at  
x = 0 ;  in other words, (aX/ax)I,=, and (a&/ax)lz=, are not in generalt directly 
obtainable from equations (4.3). However, in the base-flow problem the inte- 
gration is actually taken over 171 > 1 since @i and vi are zeros for 171 < 1 
(i.e. along the base), so that for IyI < 1 the integral representation is not 
singular at x = 0;  therefore we use equation (4.8) to obtain the base pressure 
@b(?/) (x=o,  IYI < l )  as 

and, in the case of symmetric flow, 

(4.10) 

t Unless, of course, the integrations involved can be performed analytically. 
f .  Except in the cases of base bleeding and slip at  the wall. 
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5. Axisymmetric Stokes flow 

F o r j  = 1, equations (3.14) become 

5.1. The stream function 

D'K = D2G = 0,  

where 

The boundary conditions (3.10), (3.13), and (3.15) are 

K(07Y) = Ilri(Y), 
%(07 Y) = Y V d Y ) ,  
q x ,  0 )  = V,(x, 0)  = 0. 

( 5 . 2 ~ )  
(5 .2b )  
( 5 . 2 ~ )  

The general properties of equation (5.1) have been studied by Brousse (1956), 
who gave several solutions, in particular the solution of the boundary-value 
problems for a half-circle with limiting diameter on Ox, and for the quarter-plane 
x > 0, y > 0. 

In  this latter case, and, if the boundary value is zero on the x-axis, the solution 
can be written in the form 

where MN2 = X' + y' + 7' - 237 cos 6, 

and W Y )  = V(0, Y). 
In  Appendix I, we give a different, and we believe, new method for arriving 

at equation (5.3) by using Poisson's integral formula. Therefore V, and V, are 
obtained immediately in the form given by equation (5.3), with Q(7) respectively 
equal to @i(7) and yv,(r). For reference purposes, we write them down 

( 5 . 4 ~ )  

(5 .4b )  

5.2. Velocity Jield 

u and v are easily obtained through equations (2 .5)  and (5.5); of particular 
interest is the velocity on the axis uo(x), which can be obtained as the limit of 
2$/y2 as y -+ 0. After an integration by parts, we get 
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Another integration by parts yields 

5.3. Pressure jield 
Equation (3.17) becomes 

- -  2 8  
p-pm = --- (wax: + V,), 

Y a Y  

where V, and V, are given by equations (5.4). We only give the results in final form 
for the pressure on the x-axis and for the base pressure. 

On the x-axis 

In  the base-flow problem, and for the same reasons as in two-dimensional flow, 
we also obtain the pressure on the base (x = 0 , O  < y < 1) directly from equations 
(5.4), although this is not possible for y 2 1: 

+ y f::l j sin2 0y$&) d0 d y  , (5.10) 
e=o (MN2)H 

where now M N ~  = y2 + 72 - 2yq cos e. 
However, a simpler expression, from the point of view of numerical applications, 

can be obtained in a different way. We write 

and use the following properties of the function a2q/8x2: 

Applying now equation (5.3), we see that 

where M N ~  = x ~ + y ~ + ~ ~ - 2 y y c o s ~ .  

The integration with respect to x, from co to x, yields 

f Equation (5.7) msumes that both uj(r]) and ~ ~ ( 7 )  are continuous functions. 
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After differentiating with respect to y, and making some transformations, we 

sin2@ du . 
d0dy, (5.11) 

where now M N 2  = y2 + y2 - 2 ~ ~ 7  cos 0. 

The main advantage of equation (5.11) over (5.10) lies in the substitution of 
r(du,/dy) for $i in the integrand. Equation (5.11) is the counterpart of (4.10) in 
two-dimensional flow. 

6. Numerical examples and discussions 
6.1. Xtreamline patterns 

The streamline patterns in two-dimensional (figures 3 and 4) and axisymmetric 
flows (figures 5 and 6) were calculated using the following boundary conditions 
at x = 0: 

(6.1) I i: (Y 2 a+ 1 1 7  

c (y2 26+ 1)’ 

p < y <  1)’  

u&) = &[I- cos {r(y - l)/S}] (1 < y < 6+ 1)’ 

where ui( - y) = u i (y )  in the two-dimensional case, and 

I (6.2) I 
(O<y< 1)’ 

Vi(Y) = 9vnr[l-COS{n(y-1)/6}] ( 1 < y < 2 6 + 1 ) ,  

where vi( - y) = -v&) in the two-dimensional case. 6 was taken equal to 1; ui 
and vi are shown in figure 2. The choice of cosine profiles is arbitrary except for 
one condition which will be discussed later in relation to the base pressure.? The 
calculations were made on an IBM7090 computer, and the integrations were 
performed according to Simpson’s rule. Some particular problems which arise in 
the axisymmetric case in the calculation of double integrals are discussed in 
Appendix 11. The terms contributed to the stream function by ui and vi (with 
v M  = 1) were calculated separately. The stream function corresponding to the 
combined boundary conditions (6.1) and (6.2) for any vM could then be obtained 
by a simple linear combination. The two cases considered in figures 3 to 6 are 

and 
vnf = 0, i.e. vi = 0, 

VLI1 = 0.2. 

They differ mainly by the existence, in the latter case, of a recirculating flow 
region behind the base, extending only a fraction of the base dimension down- 

t Calculations were first carried out for axisymmetric flows. It was noticed afterwards 
that the integrations occurring in the two-dimensional case can be performed analytically 
when ud and vi are polynomials in y; however, it was decided to keep the boundary condi- 
tions (6.1) and (6.2) so that comparison could be made between the two-dimensional and 
axisymmetric flows. 
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stream. The volume flow rate involved in this zone is extremely small ( -  lO-4), 
and so is the velocity. The existence of a recirculating flow is related t o  the sign 
of u,(x), the velocity on the x-axis, equations (4.7) and (5.6). The first term in u, 
is always positive for x > 0 (assuming u,(r) 2 0 ) ,  and goes to zero with x like x3. 

3 

Y 

2 

1 

, , 

, 

0: 

I ' * UI, vj 
0.5 1 

I Stokes flow 
I1 Oseen flow (see Part 2) 

FIauRE 2. Velocity profiles at x = 0, 8 = 1. 

The second termt is negative if v,(q) 2 0, positive if vi(q) < 0, and goes to zero 
with x like 22. Therefore, if v,(r) 2 0, uo(x) will be negative for 2 small enough, 
and there will be a rear stagnation point and a recirculating flow region; if 
v,(r) < 0 or if ~ ~ ( 7 )  = 0, there is no such region. Furthermore, it  is easily seen 
that the larger vdl is, the farther downstream will the rear stagnation point lie. 
For a value of v, = 0.2, which may be considered as large, it  is only at a distance 
smaller than 0 . 3 ~ ~  behind the base. 

6.2. Velocity and pressure on x-axis 

The velocity and pressure on the x-axis, corresponding to the boundary condi- 
tions (6.1) and (6.2) are shown in figures 7 and 8 for S = 1, and in figure 9 for 
S = 10. The influence of v,(r) (a= 1) is seen to be very small for the values of v M  

t The term can be written in the form 

- -  
in the two-dimensional cue. 
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0 0 5  1 .o 2.0 

X 

FIGURE 3. Streamline pattern in two-dimensional Stokes flow. I3 = 1, vi 0. 

0 0.5 1.5 2.0 

X 

FIQURE 4. Streamline pattern in two-dimensional Stokes flow. I3 = 1, WM = 0.2. 
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0.5 1.0 1.5 

X 

FIGURE 5. Streamline pattern in axisymmetric Stokes flow. 6 = 1, vi 3 0. 

0 0.5 1 .o 1.5 2.0 

X 

F I G ~ E  6. Streamline pattern in axisymmetric Stokes flow. S = 1, W M  = 0.2.  



430 H. Viviand and S. A. Berger 

considered; in particular, for vM = 0.2, and for small values of 5, the scales for 
uo and p0-jja, must be greatly enlarged in order to display the existence of 
negative velocities and of the minima which occur at  a smalI positive value of x. 
The main differences between the two-dimensional and axisymmetric cases 
consist in a more rapid rise for uo(x)  and lower pressures in the latter case. The 
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FIGURE 7. Velocity and pressure on x-axis in two-dimensional Stokes flow. 
6 = 1. A, v1 E 0; B, VM  = 0.2; B1, ae B with enlarged ordinate. 
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FIGURE 8. Velocity and pressure on x-axis in axisyrmnetrio Stokes flow. 
6 = 1. A ,  w <  I 0; B, VM = 0.2; B1, M B with enlarged ordinate. 
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rise in velocity is slower for S = 10 than for S = 1 if it is measured versus x, but 
is actually more rapid if measured versus XIS; pressure variations are smaller. 

As mentioned in the introduction, local validity of the Stokes approximation 
can be examined a posteriori by comparing inertia to viscous (or pressure) terms 
as given by the solution of the Stokes equation. This was done on the x-axis only, 

1 .o 

0.8 

0.6 
h 

H 
v 

0.4 
s 

0.2 

0 

0 

-0.1 

-0.2 8 
I& 
I 

-0.3 3. 
- 
I& 

- 0.4 

- 0 5  
0 1 2 3 4 5 6 7 8 9 10 

X 

FIGURE 9. Velocity and pressure on x-axis in Stokes flow. 6 = 10, vi G 0. 
a, Axisymmetric flow; b,  two-dimensional flow. 

0 1 2 3 4 5 6 7 8 9 
I 1 I t 1 x (&=lo) 
0 1 2 

2(S = 1) 

FIGURE 10. Ratio of inertia to pressure terms on x-axis in Stokes flow. I, S = 1; 
11, S = 10; a, axisymmetric flow: b, two-dimensional flow. 
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using the results of figures 7, 8, and 9. Velocity and pressure gradients were 
actually measured on these curves, the resulting accuracy being sufficient for our 
purpose. The results are shown in figure 10, and are summarized in the table 1 
giving the conditions for the ratio of inertia to pressure forces to be less than 0.1, 
this value being considered small enough for the Stokes approximation to apply. 

UhIV 
I------ 

1 10 
x < 1.3 x < 0.7 

x < 2.9 

x < 1.0 x < 0.5 
{1: x < 5.8 x < 2.3 

Two-dimensional x < 7.0 

Axisymmetric 

TABLE 1 

6.3. Base pressure 
From equations (4.10) and (5.11) we note that the base pressure depends only 

The base pressure, in the vicinity of the corner y = 1, is very sensitive to the 
shape of the initial profile ui(y) for y -+ 1; in particular, if (du,/dy) (1 + ) + 0, the 
pressure becomes logarithmically infinite at y = 1. This can be seen directly from 
equation (4.10) in the two-dimensional case; in the axisymmetric case one must 
use the fact (see Appendix 11) that I$(?) N (y  - 1)-2 as y -+ 1 + , to show that the 
second term in equation (5.10) goes to infinity. 

Physically this requirement that the initial profile must be of separation type 
arises because the initial profile becomes a free shear layer as soon as it leaves the 
body; if (du,/dy) (+ l)+ 0, a discontinuity in shear will be introduced at  the 
corner. The consequence of this discontinuity is the infinite negative pressure at 
the corner. The initial profile, equation (6.1), was specifically chosen to be of 
separation type to avoid this difficulty. 

Base pressure distributions are shown in figure 11 for 6 = 1 and in figure 12 for 
6 = 10. For 6 = 1 there is an appreciable decrease of pressure in the lateral (or 
radial) direction, this feature being still more accentuated in the axisymmetric 
case. This result can be compared with base pressure measurements at low 
Reynolds numbers (although outside the range of the present investigation) by 
Kavanau (1956) exhibiting similar pressure variation with y, and it can be con- 
trasted with the assumption usually made at  high Reynolds numbers of uniform 
pressure in the base region. 

on %(7)* 

6.4. General comments 
It is interesting to note that the Stokes paradox does not apply to the solution 
for two-dimensional flow given in $4, since the condition for uniform flow at 
infinity is satisfied. This is to be compared with a general theorem by Finn & No11 
(1957) according to which the only two-dimensional Stokes flow about a body, 
with bounded velocity at infinity, is the state of rest; the existence of a solution 
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in our case is therefore related to the absence of solid surfaces in the half-space 
x > 0. 

After this work was completed, it came to our attention that the general 
solution in two-dimensional flow, with u and v given as boundary conditions at  

1.0 

0.8 

0.6 

Y 
0.4 

0.2 

0.8 

\ 
\ 

\ 

\ 

Two-dimensional 

I 
I 

0 6  

Y 
0.4 

0.2 

0 
-2.5 -20 - 1.5 - 1.0 - 0.5 

pb-p?, 

FIGURE 11. Base pressure. S = 1. Stokes flow. 

x = 0, had been obtained in a different form by Forste (1963) and applied to a 
particular jet problem. Particular solutions of the jet problem have also been 
given by Dean (1936). 

As already noted, the integrations occurring in the solution for two-dimen- 
sional flow can be carried out analytically when ui and vi are polynomials in y ;  
the pressure at  x = 0 can then be obtained without difficulty. 

28 Fluid Mech. 23 
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In  the particular case where vi = 0, a simple relation exists between ui(y) and 
Sl,(y) = R(0, y), the vorticity in the base plane; indeed, if vi -= 0, V, 3 0, and from 

dui equation (3.16) we obtain 
&(y) = - 2- , 

dY 

and as a consequence 

Therefore, viscous forces exerted on the plane x = 0 are zero for all y, and vorticity 
is zero on the base. In  two-dimensional flow these results hold also if vi(y) is a 
constant not necessarily zero, since then V,(x, y) = const. = vi. 

Appendix I 
The purpose of this appendix is to derive the solution of the following boundary- 

value problem a 2  a 2  I a 
ax2 ay2 yay 

D2V = 0, where D2 = -+----, 

in the quarter plane x > 0, y > 0. 

Let $4 = v/g. (A 3) 

We shall verify aposteriori that $(x, 0) is finite so that condition (A 2 b )  is satisfied. 
We find 

so that $4 must be the solution of 

Consider now a five-dimensional space with co-ordinates x, xl, xz, x3, x4 such 

xt, and the function $(x, xl, x2, x3, x4) defined by $ = $(x, y); it  is 
4 

i=l 
that y2 = 

so that 3 is a harmonic function in these five variables; since 3 is known for x = 0 
(being equal to $4i(y)), we can write directly, using Poisson's integral in a five- 
dimensional space and for the domain x > 0 (see Courant & Hilbert 1962, vol. 11, 
D. 268). 

i=l,  ..., 4 
4 

i=l 
where l;l2 = c g. 
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NOW replace ti (i = 1, ..., 4) by polar co-ordinates 7, el, O,, 8, through the 
transformation formulas ,rl = cOs el, 

.g2 = 7 sin el cos O,, 
t3 = 7 sin sin 8, cos 8,, 
t4 = 7 sin 8, sin 8, sin 8,. 

One finds 

/ Base 

FIGURE 13. 

so that equation (A 6 )  becomes 

2= 41(7/)73sin28, sin8,dyd8,d8,d8, 
Dt Q1(x, %52, x3, x4) = G 2  Y 

(A 7) 
3x s,;=us” s= s - 

&=O 
(is 1,2,3) 

where 
D = x2 + y2 + q2 - 2y(z1 cos 8, - x2 sin 8, cos 8, - x3 sin 81 sin 8 2  cos 8, 

- x4 sin 8, sin O2 sin 8,). 

By definition, 7 is a function of xl, x2, x,, xq only through the combination 

y2 = C x:; in particular, if we consider the point (5, x1 = y, x2 = x, = x4 = 0), 
4 

i = l  

we get D = x2+Y2++2y7cose1. 

Performing the integration with respect to 8, and 8, in equation (A7),  and 
dropping the subscript 1 in t?,, we finally obtain 

28-2 
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From this expression one can easily show that @(x,O) is finite. Going back to 
V ( x ,  y) (equations (A 3) and (A 5 ) )  we find 

The denominator in the integrand can be given a geometrical interpretation in 
the physical space; let M be the point (x,y) and N the point of the plane x = 0 
with polar co-ordinates (q,O) (see figure 13). Then M N 2  = x2 + y2 + y2 - 2yq cos 8. 

The quantity y dy d0 can also be interpreted as the surface element in the plane 
x = 0 so that the double integral in (A 9) is a surface integral over half of the 
plane x = 0. 

Equation (A 9) represents the solution as long as the integral has a meaning. 
Brousse (1956) has shown this to be the case when %(y) - ya as y -+ m, with 
a < 3. 

Appendix I1 

symmetric flow involves the calculation of double integrals of the form 
The determination of the stream function and of the base pressure in axi- 

where M N ~  = x2+ y2+ 72-  2yy cOs e, 

and where m = 3, 5, or 7. 
In  this appendix, we carry out the integration with respect to 0 by expanding 

the integrand in series; the remaining integration is to be performed numerically. 
Let 

Note that y > 1, if x + 0 (y and y > 0). 
Then 

Substituting this expression for M N 2  into J,, we get 

where 

Calculation of I% 
Since cos 8ly < 1, we can expand the integrand in series 
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Integrating term by term we find that 

Hence 

where 

The C2,'s were calculated using the recurrence formula 

They form an increasing sequence, with C, = $ and 

C2,-Cm 1-- - -+0  - as n-tco,  [ l in  (:2)] 

where c, = q2 = 1.8006 .... n 

Calculation of I4 
I&y) is easily obtained from I8 if we notice that 

1% = I&--EY(d/dY) (I#). 

The result can be written in the form 

where B2, = C2, - +m(C, - C2,). 

The coefficients B2, form an increasing sequence with B, = Q and 

lim B2, = B, = GCa = 1.530 .... 
n+co 

Calculation of I8t 
Following the method used for 18, and using 

00 

we obtain 4 = C f l 2 n ~ - ~ ~ ,  
n= 0 

t I$ is simply related to the Legendre function of the second kind and order 4: 
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where 

Note that H,, - rn = - J21 - as n+co. 
n n  

To reduce the minimum number of terms in the series which must be retained 
for a given accuracy, we write I3 in the form 

or 

where 

a T2" 18 = H, + tCw C 12 + C - +C,/n) y-2n, 
n=l  n= 1 

co 

I$ = J2 log, (1 - y-,) - C A,, y-,,, 
2 n  n=l 

The AZn's form a decreasing sequence with 

as n-+co. 
1542 1 
16 n n2 
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